APPENDI E

FO, R H Q, AR ER 2012 REA ONABLE PO EN IAL ANAL I (RPA) , MMAR ABLE

FOURTH QUARTER 2012 REASONABLE POTENTIAL ANALYSIS SUMMARY THE BOEING COMPANY SANTA SUSANA FIELD LABORATORY NPDES PERMIT CA0001309

- 1. The f w g Rea abePtetaAa (RPA) → de the aat ca e t a e f ed b the ced e t ed Reasonable Potential Analysis Methodology Technical Memo (MWH a d F w Sc e ce, 2006).
- 2. The t g data et t z ed t c d of the RPA c t fa a cabe a d e e a t data f the e e t e t g ate .
- 3. A dected by the CTR and the Reg and Water Cott Blad 2,3,7,8-TCDD (D) was elast be elected NPDES eliting and the RPA and TCDD Ttanka, each of the exerce of the case of the exerce of
- 4. I cac at gthe ase age, ta dad de set , c effce t f se at , a d jedted a ceff et c cet at (99/99), e-haf fthe MDLwa, edf c cet at e t ed a ND. Data e ted with a fe weet c ded th RPA a Be g be ese a fed data a e t "a ate, sa d, ee sa t, () e e e tat se ft ware c till et a daethe ef e t t z ed t RPA.
- 5. A fthef w gabbe ≠ at a d/ te a t qc e ≠ tabe.

Def t f Ac ,	<u>Abbe⊬at ,adTe gUed</u>
>=	Geate tha e. at
*	Fehwatea, atc fecte af eta aee e eda a
	lif of fitta had e (g/L) thewate b d Thee, at
	a e seded the CTR. (US EPA. 2000). Vale dialed
	c e dt atta had e f 100 g/.
g/L	C cetat t, c ga e te
g/L A Data Q a fed	c e dt atta ha d e f 100 g/. C cetat t, c g a e te A a a a b e t g da a a e a f ed a d tat ca a a e f ed.
A L a	The 2010 NPDES Pete, ea, at g.
A a ab e Data < DL	A a a abe t g datathata e t a fed a e be w detect t.
В	Bac g 🛴 🔭 d
С	C cet at
CCC	Cte Ct _{L-L} Ccetat
CMC	Cte Ma, C cetal

FOURTH QUARTER 2012 REASONABLE POTENTIAL ANALYSIS SUMMARY THE BOEING COMPANY

Table E1
REASONABLE POTENTIAL ANALYSIS FOR PRIORITY POLLUTANTS, (OUTFALL 019)

Table E1 REASONABLE POTENTIAL ANALYSIS FOR PRIORITY POLLUTANTS, (OUTFALL 019)

				Step	1: Water Quality Criteria, D	Determine C		Step 2		Step 3	Step 4
				CTR	CRITERIA						
				Freshwater	Human Health	Basin Plan		Is Effluent V	Vas Constituent	Are all	
							C = Lowest	Data	Detected in	Detection	If DL > C,
Outfall CTR Constituent	Units	MEC	CV	CMC = Acute CCC = Chronic	HH W&O (Not App) HH (O = HH Title 22 GWR	Criteria	Available	Effluent Data	Limits > C	MEC = Min (DL) MEC >= C

FOURTH QUARTER 2012 THE BOEING COMPANY SANTA SUSANA FIELD LABORATORY NPDES PERMIT CA0001309

Step 2 Step 4

Outfall CTR Constituent	Units	MEC C	V CMC = Acute	CCC = Chronic	HH W&O (Not App)	HH O = HH	Title 22 GWR						
3-7,9-10 001 A t	_{L−} g/L	0.38 0	.6 NONE	NONE	14	4300	6	6	Ye	Ye	NA	NA	N
3-7,9-10 002 A e c	_{L−} g/L	A Data Q a fed 0	.6 340	150	NONE	NONE	10	50	N	N	N	NA	N
3-7,9-10 003 Be	_{L−} g/L	A Data Q a fed 0	.6 NONE	NONE	Na at ⊬e	Na at ≁e	4	4	N	N	N	NA	N
3-7,9-10 004 Cad L	∟ g/L	A ⊮a ab e Data < DL 0	.6	2.5	Na at ≁e	Na at ≁e	5	2.5	Ye	N	N	NA	N
3-7,9-10 005a Ch _L	_{L−} g/L	A Data Q a fed 0	.6	206	Na at ≁e	Na at ⊮e		207.0	N	N	N	NA	N
3-7,9-10 005b Ch _L . VI	_{L−} g/L	A Data Q a fed 0	.6 16.293279022	11.4	Na at ≁e	Na at ≁e	50	11.4	N	N	N	NA	N
3-7,9-10 006 C e	_{L−} g/L	3.8 0	.6	9.3	1300	NONE		9.3	Ye	Ye	NA	NA	N
3-7,9-10 007 Lead	_{k−} g/L	0.56 0	.6	3.18	Na at ≁e	Na at ≁e		3.2	Ye	Ye	NA	NA	N
3-7,9-10 008 Me ₁ ¢	_{k−} g/L	A Data Q a fed 0	.6 Ree√ed	Re e ⊭e d	0.05	0.051	2	0.051	N	N	N	NA	N
3-7,9-10 009 N c e	_{k−} g/L	A Data Q a fed 0	.6	52	610	4600	100	52	N	N	N	NA	N
3-7,9-10 010 See_	_{k−} g/L	A ∕a abe Data < DL 0	.6 Ree√ed	5	Na at ≁e	Na at ≁e	50	5	Ye	N	N	NA	N
3-7,9-10 011 S e	_{Ļ−} g/L	A Data Q a fed 0	.6	е	NONE	NONE		4.06	N	N	N	NA	N
3-7,9-10 012 Tha	_{Ļ−} g/L	A ∕a abe Data < DL 0	.6 NONE	NONE	1.7	6.3	2	2	Ye	N	N	NA	N
3-7,9-10 013 Z c	_{Ļ−} g/L	A Data Q a fed 0	.6	119.8	е	NONE		119.8	N	N	N	NA	N
3-7,9-10 014 Tta Ca de	_{k−} g/L	A ∕a ab e Data < DL 0	.6 22	5.2	700	220000	200	5.2	Ye	N	N	NA	N
3-7,9-10 015 A be t	F be /L	A Data Q a fed 0	.6 NONE	NONE	7000000	NONE	7000000	700000	N	N	N	NA	N
3-7,9-10 016 TCDD TEQ_N DNQ	_{k−} g/L	A ∕a abe Data < DL 0	.6 NONE	NONE	1.30E-08	1.40E-08	3.00E-05	1.40E-08	Ye	N	N	NA	N
3-7,9-10 017 Ac e	_{L−} g/L	A Data Q a fed 0	.6 NONE	NONE	320	780		780	N	N	N	NA	N
3-7,9-10 018 Ac t e	_{L−} g/L	A Data Q a fed 0	.6 NONE	NONE	0.059	0.66		0.66	N	N	N	NA	N
3-7,9-10 019 Bez e e	_{L−} g/L	A Data Q a fed 0	.6 NONE	NONE	1.2	71	1	1	N	N	N	NA	N
3-7,9-10 020 B f	_{L−} g/L	A Data Q a fed 0	.6 NONE	NONE	4.3	360		360	N	N	N	NA	N

							Step	1: Water Quality Cri	teria, Determin	e C		Step 2		Step 3		Step 4
						Eros	CTR hwater	CRITERIA Human He	alth	Basin Plan		le Effluent	Was Constituent	Are all		
Outfall	CTR	Constituent	Units	MEC	с٧			HH W&O (Not App)		Title 22 GWR	C = Lowest Criteria	Data Available	Detected in	Detection	If DL > C, MEC = Min (DL)	MEC >= C
3-7,9-10	023	Db ch ethae	_{اب} g/L	A Data Q a fed	0.6	NONE	NONE	0.401	34		34	N	N	N	NA	N
3-7,9-10	024	Ch etha e	ے g/L	A Data Q a fed	0.6	NONE	NONE	NONE	NONE		NONE	N	N	N	NA	N
3-7,9-10	025	2-Ch eth / ethe	ے g/L	A Data Q a fed	0.6	NONE	NONE	NONE	NONE		NONE	N	N	N	NA	N
3-7,9-10	026	Ch f	_L g/L	A Data Q a fed	0.6	NONE	NONE	Re e <i>⊭</i> ed	Re e ∉e d		NONE	N	N	N	NA	N
3-7,9-10	027	B dch ethae	_Ļ g/L	A Data Q a fed	0.6	NONE	NONE	0.56	46		46	N	N	N	NA	N
3-7,9-10	028	1,1-D ch	_Ļ g/L	A Data Q a fed	0.6	NONE	NONE	NONE	NONE	5	5	N	N	N	NA	N
3-7,9-10	029	1,2-D ch et ha e	ے g/L	A Data Q a fed	0.6	NONE	NONE	0.38	99	0.5	0.5	N	N	N	NA	N
3-7,9-10	030	1,1-D ch	_L g/L	A Data Q a fed	0.6	NONE	NONE	0.057	3.2	6	3.2	N	N	N	NA	N
3-7,9-10	031	1,2-D ch a e	_L g/L	A Data Q a fed	0.6	NONE	NONE	0.52	39	5	5	N	N	N	NA	N
3-7,9-10	032	c -1,3-D ch e e	ے g/L	A Data Q a fed	0.6	NONE	NONE	10	1700	0.5	0.5	N	N	N	NA	N
3-7,9-10	032a	a -1,3-D ch e e	ے g/L	A Data Q a fed	0.6	NONE	NONE	10	1700	0.5	0.5	N	N	N	NA	N
3-7,9-10	033	Eth bez e e	_{اء} . g/L	A Data Q a fed	0.6	NONE	NONE	3100	29000	0.7	0.7	N	N	N	NA	N
3-7,9-10	034	B etha e	_{اء} . g/L	A Data Q a fed	0.6	NONE	NONE	48	4000		4000	N	N	N	NA	N
3-7,9-10	035	Ch dha e	ے۔ g/L	A Data Q a fed	0.6	NONE	NONE	Na at ≁e	Na at ≁e		NONE	N	N	N	NA	N
3-7,9-10	036	Metheech de	ے۔ g/L	A Data Q a fed	0.6	NONE	NONE	4.7	1600		1600	N	N	N	NA	N
3-7,9-10	037	1,1,2,2-Tet ach et ha e	_د . g/L	A Data Q a fed	0.6	NONE	NONE	0.17	11	1	1	N	N	N	NA	N
3-7,9-10	038	Tet achethe e	_د . g/L	A Data Q a fed	0.6	NONE	NONE	0.8	8.85	5	5	N	N	N	NA	N
3-7,9-10	039	T _L e e	_L . g/L	A Data Q a fed	0.6	NONE	NONE	6800	200000	150	150	N	N	N	NA	N
3-7,9-10	040	a -1,2-D ch et he e	ے۔ g/L	A Data Q a fed	0.6	NONE	NONE	700	140000	10	10	N	N	N	NA	N
3-7,9-10	041	1,1,1-T ch	_{k−} g/L	A Data Q a fed	0.6	NONE	NONE	Na at ≁e	Na at ⊬e	200	200	N	N	N	NA	N
3-7,9-10	042	1,1,2ŧ ch etha e	_{k−} g/L	A Data Q a fed	0.6	NONE	NONE	0.6	42	5	5	N	N	N	NA	N
3-7,9-10	043	T ch the e	ړ. g/L	A Data Q a fed	0.6	NONE	NONE	2.7	81	5	5	N	N	N	NA	N
3-7,9-10	044	V ch de	ے۔ g/L	A Data Q a fed	0.6	NONE	NONE	2	525	0.5	0.5	N	N	N	NA	N

						1: Water Quality Cri	teria, Determin	e C		Step 2		Step 3		Step 4
						CRITERIA								
	1	-1		Fres	hwater	Human He	ealth	Basin Plan	C = Lowest	Is Effluent Data	Was Constituent Detected in	Are all Detection	If DL > C,	
utfall CTR Constituent	Units	MEC	cv	CMC = Acute	CCC = Chronic	HH W&O (Not App)	HH O = HH	Title 22 GWR		Available			MEC = Min (DL)	MEC >= C
,9-10 045 2-ch he	լ₋ g/L	A Data Q a fed	0.6	NONE	NONE	120	400		400	N	N	N	NA	N
9-10 046 2,4-D ch he	_▶ . g/L	A Data Q a fed	0.6	NONE	NONE	93	790		790	N	N	N	NA	N
9-10 047 2,4-d eth he	⊾ g/L	A Data Q a fed	0.6	NONE	NONE	540	2300		2300	N	N	N	NA	N
9-10 048 2-Meth -4,6-d t he	_L g/L	A Data Q a fed	0.6	NONE	NONE	13.4	765		765	N	N	N	NA	N
,9-10 049 2,4-d t he	_L ₋ g/L	A Data Q a fed	0.6	NONE	NONE	70	14000		14000	N	N	N	NA	N
,9-10 050 2- t he	_L g/L	A Data Q a fed	0.6	NONE	NONE	NONE	NONE		NONE	N	N	N	NA	N
9-10 051 4- t he	_L g/L	A Data Q a fed	0.6	NONE	NONE	NONE	NONE		NONE	N	N	N	NA	N
9-10 052 4-Ch -3- eth he	_▶ . g/L	A Data Q a fed	0.6	NONE	NONE	NONE	NONE		NONE	N	N	N	NA	N
9-10 053 Petach he	_▶ . g/L	A Data Q a fed	0.6	H de e de t	H de e de t	0.28	8.2	1	1	N	N	N	NA	N
9-10 054 Phe	_L g/L	A Data Q a fed	0.6	NONE	NONE	21000	4600000		4600000	N	N	N	NA	N
9-10 055 2,4,6-T ch he	_L g/L	A Data Q a fed	0.6	NONE	NONE	2.1	6.5		6.5	N	N	N	NA	N
9-10 056 Ace a It he e	_▶ . g/L	A Data Q a fed	0.6	NONE	NONE	1200	2700		2700	N	N	N	NA	N
0-10 057 Ace altheee	_L g/L	A Data Q a fed	0.6	NONE	NONE	NONE	NONE		NONE	N	N	N	NA	N
-10 058 Athace e	⊾ g/L	A Data Qa fed	0.6	NONE	NONE	9600	11000007,	94000		8895557.3(N)-5708.4(N)-552	1.7(NA)-5557	7.5(N)TJT*(3-7,9-	10)-1208.7(05

FOURTH QUARTER 2012
THE BOEING COMPANY
SANTA SUSANA FIELD LABORATORY
NPDES PERMIT CA0001309

Step 2 Step 4

					Step 1: Water Quality Criteria, Determine C CTR CRITERIA						Step 2		Step 3		Step 4	
						Eros				Basin Plan		le Effluent	Was Constituent	Are all		-
Outfall	CTR	Constituent	Units	MEC	cv			HH W&O (Not App)		Title 22 GWR	C = Lowest Criteria	Data Available	Detected in	Detection	If DL > C, MEC = Min (DL)	MEC >= C
3-7,9-10	091	He ach etha e	اء g/L	A Data Q a fed	0.6	NONE	NONE	1.9	8.9		8.9	N	N	N	NA	N
3-7,9-10	092	I de (1,2,3-cd)P e e	ے g/L	A Data Q a fed	0.6	NONE	NONE	0.0044	0.049		0.049	N	N	N	NA	N
3-7,9-10	093	I h e	ے g/L	A Data Q a fed	0.6	NONE	NONE	8.4	600		600	N	N	N	NA	N
3-7,9-10	094	Nahthae e	_{ا⊷} g/L	A Data Q a fed	0.6	NONE	NONE	NONE	NONE		NONE	N	N	N	NA	N
3-7,9-10	095	Nt bezee	ار. g/L	A Data Q a fed	0.6	NONE	NONE	17	1900		1900	N	N	N	NA	N
3-7,9-10	096	N-Nt dethae	ے g/L	A Data Q a fed	0.6	NONE	NONE	0.00069	8.1		8.1	N	N	N	NA	N
3-7,9-10	097	-Nt -d a e	ے g/L	A Data Q a fed	0.6	NONE	NONE	0.005	1.4		1.4	N	N	N	NA	N
3-7,9-10	098	N-Nt dhe a e	ے g/L	A Data Q a fed	0.6	NONE	NONE	5	16		16	N	N	N	NA	N
3-7,9-10	099	Phe athe e	ار. g/L	A Data Q a fed	0.6	NONE	NONE	NONE	NONE		NONE	N	N	N	NA	N
3-7,9-10	100	Pee	ے g/L	A Data Q a fed	0.6	NONE	NONE	960	11000		11000	N	N	N	NA	N
3-7,9-10	101	1,2,4-T ch bez e e	ے g/L	A Data Q a fed	0.6	NONE	NONE	NONE	NONE		NONE	N	N	N	NA	N
3-7,9-10	102	Ad	_{ا⊷} g/L	A Data Q a fed	0.6	3	NONE	0.00013	0.00014		0.00014	N	N	N	NA	N
3-7,9-10	103	a ha-BHC	ے g/L	A Data Q a fed	0.6	NONE	NONE	0.0039	0.013		0.013	N	N	N	NA	N
3-7,9-10	104	bet a-BHC	ے g/L	A Data Q a fed	0.6	NONE	NONE	0.014	0.046		0.046	N	N	N	NA	N
3-7,9-10	105	L da e (ga a-BHC)	ے g/L	A Data Q a fed	0.6	0.95	NONE	0.019	0.063	0.2	0.063	N	N	N	NA	N
3-7,9-10	106	det a-BHC	اء g/L	A Data Q a fed	0.6	NONE	NONE	NONE	NONE		NONE	N	N	N	NA	N
3-7,9-10	107	Ch da e	اء g/L	A Data Q a fed	0.6	2.4	0.0043	0.00057	0.00059		0.00059	N	N	N	NA	N
3-7,9-10	108	 4,4'-DDT	_L . g/L	A Data Q a fed	0.6	1.1	0.001	0.00059	0.00059		0.00059	N	N	N	NA	N
3-7,9-10	109	4,4'-DDE	_L . g/L	A Data Q a fed	0.6	NONE	NONE	0.00059	0.00059		0.00059	N	N	N	NA	N
3-7,9-10	110	4,4'-DDD	_{L∼} g/L	A Data Q a fed	0.6	NONE	NONE	0.00083	0.00084		0.00084	N	N	N	NA	N
3-7,9-10	111	Ded	اء g/L	A Data Q a fed	0.6	0.24	0.056	0.00014	0.00014		0.00014	N	N	N	NA	N
3-7,9-10	112	Ed _L fal	اء g/L	A Data Q a fed	0.6	0.22	0.056	110	240		0.056	N	N	N	NA	N
3-7,9-10	113	Ed _L fa II	ے g/L	A Data Q a fed	0.6	0.22	0.056	110	240		0.056	N	N	N	NA	N

								1: Water Quality Cri	teria, Determin	e C		Step 2		Step 3		Step 4
						Fres	hwater	CRITERIA Human He	-alth	Basin Plan		Is Effluent	Was Constituent	Are all		
Outfall	CTR	Constituent	Units	MEC	с٧			HH W&O (Not App)			C = Lowest Criteria	Data Available	Detected in Effluent Data	Detection	If DL > C, MEC = Min (DL)	MEC >= C
3-7,9-10	114	Ed _L _fa Ş_fate	_L g/L	A Data Q a fed	0.6	NONE	NONE	110	240		240	N	N	N	NA	N
3-7,9-10	115	E d	ار. g/L	A Data Q a fed	0.6	0.086	0.036	0.76	0.81		0.036	N	N	N	NA	N
3-7,9-10	116	Ed Adehde	ار. g/L	A Data Q a fed	0.6	NONE	NONE	0.76	0.81		0.81	N	N	N	NA	N
3-7,9-10	117	He t ach	_L . g/L	A Data Q a fed	0.6	0.52	0.0038	0.00021	0.00021		0.00021	N	N	N	NA	N
3-7,9-10	118	He t ach E de	_L . g/L	A Data Q a fed	0.6	0.52	0.0038	0.0001	0.00011		0.00011	N	N	N	NA	N
3-7,9-10	119	A c1016	_L . g/L	A Data Q a fed	0.6	NONE	0.014	0.00017	0.00017		0.00017	N	N	N	NA	N
3-7,9-10	120	A c1221	_L g/L	A Data Q a fed	0.6	NONE	0.014	0.00017	0.00017		0.00017	N	N	N	NA	N
3-7,9-10	121	A c1232	_L . g/L	A Data Q a fed	0.6	NONE	0.014	0.00017	0.00017		0.00017	N	N	N	NA	N
3-7,9-10	122	A c1242	_L . g/L	A Data Q a fed	0.6	NONE	0.014	0.00017	0.00017		0.00017	N	N	N	NA	N
3-7,9-10	123	A c1248	_L g/L	A Data Q a fed	0.6	NONE	0.014	0.00017	0.00017		0.00017	N	N	N	NA	N
3-7,9-10	124	A c -1254	_L . g/L	A Data Q a fed	0.6	NONE	0.014	0.00017	0.00017		0.00017	N	N	N	NA	N
3-7,9-10	125	A c1260	Ļ. g/L	A Data Q a fed	0.6	NONE	0.014	0.00017	0.00017		0.00017	N	N	N	NA	N
3-7,9-10	126	T a he e	Ļ. g/L	A Data Q a fed	0.6	0.73	0.0002	0.0073	0.00075		0.0002	N	N	N	NA	N
3-7,9-10	127	E. C	MPN/100	A Data Q a fed	0.6	NA	NA	NA	NA	235	MPN/100	N	N	N	NA	N

Table E2 REASONABLE POTENTIAL ANALYSIS FOR SECONDARY POLLUTANTS, (OUTFALL 019)

Outfall	Constituent	Monitoring		Number of Samples	MEC	CV	Multiplier	Projected Maximum Effluent Concentration (99/99)	Dilution Ratio	Background Concentration	Projected Maximum Receiving Water Concentration	Step 1, Determine Water Quality Objectives	BU - Beneficial use protection NC-Human noncarcinogen AP-Aquatic life protection
19	Ba _L	A _L . a	g/L	0	A Data Q a fed	0.6	A Data Qa fed	A Q a fed Data	0	0	NA	1000	BU
19	B che ca O ge De a d (BOD 5 da)	D cha ge	g/L	2	- A ∕a ab e Data <dl< td=""><td>0.6</td><td>7.4</td><td>A ⊬a ab e Data < DL</td><td>0</td><td>0</td><td>NA</td><td>20</td><td>BU</td></dl<>	0.6	7.4	A ⊬a ab e Data < DL	0	0	NA	20	BU
19	Ch de	D cha ge	g/L	2	36	0.6	7.4	266.2	0	0	266.2	150	BU
19	Ę, de	D cha ge	g/L	0	A Data Q a fed	0.6	A Data Qa fed	A Q a fed Data	0	0	NA	1.6	BU
19	Ntate+Nttea Nt ge (N)	D cha ge	g/L	2	A ∕a ab e Data <dl< td=""><td>0.6</td><td>7.4</td><td>A ⊮a ab e Data < DL</td><td>0</td><td>0</td><td>NA</td><td>8</td><td>BU/TMDL</td></dl<>	0.6	7.4	A ⊮a ab e Data < DL	0	0	NA	8	BU/TMDL
19	O & G ea e	D cha ge	g/L	2	A ⊬a ab e Data <dl< td=""><td>0.6</td><td>7.4</td><td>A ∉a ab e Data < DL</td><td>0</td><td>0</td><td>NA</td><td>10</td><td>BU</td></dl<>	0.6	7.4	A ∉a ab e Data < DL	0	0	NA	10	BU
19	Ş. fate	D cha ge	g/L	2	160	0.6	7.4	1183.0	0	0	1183.0	300	BU
19	S. factat (MBAS)	D cha ge	g/L	2	A ⊬a ab e Data <dl< td=""><td>0.6</td><td>7.4</td><td>A ⊮a ab e Data < DL</td><td>0</td><td>0</td><td>NA</td><td>0.5</td><td>BU</td></dl<>	0.6	7.4	A ⊮a ab e Data < DL	0	0	NA	0.5	BU
19	Tta_D √edS_d	D cha ge	g/L	2	560	0.6	7.4	4140.5	0	0	4140.5	150	BU
19	T ta Sett eable S d	D cha ge		2	A ⊬a ab e Data <dl< td=""><td>0.6</td><td>7.4</td><td>A ⊬a ab e Data < DL</td><td>0</td><td>0</td><td>NA</td><td>0.3</td><td>BU</td></dl<>	0.6	7.4	A ⊬a ab e Data < DL	0	0	NA	0.3	BU
19	TtaŞ e dedS d	D cha ge	g/L	2	A ∉a ab e Data <dl< td=""><td>0.6</td><td>7.4</td><td>A ∉a ab e Data < DL</td><td>0</td><td>0</td><td>NA</td><td>45</td><td>BU</td></dl<>	0.6	7.4	A ∉a ab e Data < DL	0	0	NA	45	BU

Outfall	Constituent	Monitoring		Number of Samples	MEC	CV	Multiplier	Projected Maximum Effluent Concentration (99/99)		Background Concentration	Projected Maximum Receiving Water Concentration	Step 1, Determine Water Quality Objectives	BU - Beneficial use protection NC-Human noncarcinogen AP-Aquatic life protection
3-7,9-10	В	A _L . a	g/L	0	A Data Qa fed	0.6	A Data Qa fed	A Q a fed Data	0	0	NA	1	BU
3-7,9-10	Ch_ de	D cha ge	g/L	1	2.3	0.6	13.2	30.4	0	0	30.4	150	BU
3-7,9-10	F_ de	A _L . a	g/L	0	A Data Qa fed	0.6	A Data Qa fed	A Q a fed Data	0	0	NA	1.6	BU
3-7,9-10	Ntate+Nttea Nt ge (N)	D cha ge	g/L	1	0.93	0.6	13.2	12.3	0	0	12.3	8	BU/TMDL
3-7,9-10	O _x & G ea e	D cha ge	g/L	1	A ⊬a ab e Data <dl< td=""><td>0.6</td><td>13.2</td><td>A ⊬a ab e Data < DL</td><td>0</td><td>0</td><td>NA</td><td>10</td><td>BU</td></dl<>	0.6	13.2	A ⊬a ab e Data < DL	0	0	NA	10	BU
3-7,9-10	Ş. fat e	D cha ge	g/L	1	10	0.6	13.2	132.0	0	0	132.0	300	BU
3-7,9-10	Tta_D _≪edS_d	D cha ge	g/L	1	72	0.6	13.2	950.2	0	0	950.2	150	BU
3-7,9-10	TtaS e ded S d	A _L . a	g/L	1	A ⊬a ab e Data <dl< td=""><td>0.6</td><td>13.2</td><td>A ⊮a ab e Data < DL</td><td>0</td><td>0</td><td>NA</td><td>45</td><td>BU</td></dl<>	0.6	13.2	A ⊮a ab e Data < DL	0	0	NA	45	BU